遗传学和基因组学

From leveraging massive data sets to studying more than 1 million genomes, our scientists are challenging how we better understand and treat disease.

\r\n"}}" id="text-173c1089cd" class="cmp-text">

从利用大规模数据集研究超过100万基因组,科学家正在挑战我们更好地理解和治疗疾病。

解开基因组数据的力量

Genomics is swiftly moving to the forefront of medicine and helping transform health care by making it more personalized and proactive. With new advances in technology, scientists can do things that wouldn't have been possible just a few years ago, like completing the human genome sequence and exploring the novel regions and functions of the genome.
\r\n
\r\nWe’re leading one of the largest genomics research efforts in the world. Our goal is to build a greater understanding of disease biology and human data to deliver the right medicines to the right patients at the right time. With genomic insights from diverse sources — from individual patients to nation-level health care data — we’re on a mission to disrupt the drug discovery and development paradigm.
\r\n

\r\n"}}" id="text-3219e7e454" class="cmp-text">

基因组学是迅速移动的前沿医学和医疗帮助变换,使其更加个性化和主动。新技术的进步,科学家可以做不可能的事情就在几年前,完成人类基因组序列和探索小说的区域和功能基因组。

我们领先世界上最大的基因组学研究成果之一。我们的目标是建立一个更大的理解疾病的生物学和人类的数据交付正确的药物在正确的时间正确的病人。从不同来源与基因组的见解——从单个病人国家级卫生保健数据——我们的使命来扰乱药物发现和开发模式。狗万正网地址


精密医学视频缩略图

为什么不是药一刀切?

我们的科学家分解精密医学和基因组研究的作用。

为什么不是药一刀切?

我们的科学家分解精密医学和基因组研究的作用。

我们的利益包括:

\r\n
  • Utilizing innovative gene editing systems as a bridge between genomics and biology
    \r\n
    \r\n
  • \r\n
  • Leveraging computational biology enabling multi-omics data integration, machine learning and human biology characterization to drive innovation
    \r\n
    \r\n
  • \r\n
  • Leveraging rare diseases to discover and/or validate targets ultimately to help us design more individualized medicines for patients
    \r\n
    \r\n
  • \r\n
  • Providing genetic evidence to repurpose some of our existing medicines into new indications
    \r\n
    \r\n
  • \r\n
  • Implementing induced pluripotent stem cells (iPSCs) with gene editing and genomics
    \r\n
    \r\n
  • \r\n
  • Applying cutting-edge platforms integrated with automated wetlab and standardized analysis pipeline for high-throughput multi-omic data generation
    \r\n
    \r\n
  • \r\n
  • Using AI/ML and predictive modeling for a variety of analyses for target prioritization, extracting knowledge from multi-omics data, imaging and others
    \r\n
    \r\n
  • \r\n
  • Using human genetic data to accelerate R&D and reduce failure rates
  • \r\n\r\n"}}" id="text-d521f80d4e" class="cmp-text">
    • 利用创新的基因编辑系统作为基因组学和生物学之间的桥梁

    • 利用计算生物学使multi-omics数据集成、机器学习和人类生物学特性来推动创新

    • 利用罕见疾病的发现和/或验证最终目标来帮助我们设计更个性化药物的病人

    • 提供现有药物遗传学证据,把我们的一些新的迹象

    • 实现诱导多能干细胞(万能)基因编辑和基因组学

    • 应用先进的平台集成了自动wetlab和标准化的分析管道高通量multi-omic数据生成

    • 使用AI /毫升和预测建模各种分析为目标的优先级,从multi-omics数据中提取知识、成像等

    • 使用人类基因数据加速研发并降低失败率